Statistical Machine Translation

Statistical Machine Translation PDF
Author: Philipp Koehn
Publisher: Cambridge University Press
ISBN: 0521874157
Category : Computers
Languages : un
Pages : 433

Get Book

Statistical Machine Translation

by Philipp Koehn, Statistical Machine Translation Books available in PDF, EPUB, Mobi Format. Download Statistical Machine Translation books, The dream of automatic language translation is now closer thanks to recent advances in the techniques that underpin statistical machine translation. This class-tested textbook from an active researcher in the field, provides a clear and careful introduction to the latest methods and explains how to build machine translation systems for any two languages. It introduces the subject's building blocks from linguistics and probability, then covers the major models for machine translation: word-based, phrase-based, and tree-based, as well as machine translation evaluation, language modeling, discriminative training and advanced methods to integrate linguistic annotation. The book also reports the latest research, presents the major outstanding challenges, and enables novices as well as experienced researchers to make novel contributions to this exciting area. Ideal for students at undergraduate and graduate level, or for anyone interested in the latest developments in machine translation.



Linguistically Motivated Statistical Machine Translation

Linguistically Motivated Statistical Machine Translation PDF
Author: Deyi Xiong
Publisher: Springer
ISBN: 9812873562
Category : Language Arts & Disciplines
Languages : un
Pages : 152

Get Book

Linguistically Motivated Statistical Machine Translation

by Deyi Xiong, Linguistically Motivated Statistical Machine Translation Books available in PDF, EPUB, Mobi Format. Download Linguistically Motivated Statistical Machine Translation books, This book provides a wide variety of algorithms and models to integrate linguistic knowledge into Statistical Machine Translation (SMT). It helps advance conventional SMT to linguistically motivated SMT by enhancing the following three essential components: translation, reordering and bracketing models. It also serves the purpose of promoting the in-depth study of the impacts of linguistic knowledge on machine translation. Finally it provides a systematic introduction of Bracketing Transduction Grammar (BTG) based SMT, one of the state-of-the-art SMT formalisms, as well as a case study of linguistically motivated SMT on a BTG-based platform.



Syntax Based Statistical Machine Translation

Syntax based Statistical Machine Translation PDF
Author: Philip Williams
Publisher: Morgan & Claypool Publishers
ISBN: 1627055029
Category : Computers
Languages : un
Pages : 208

Get Book

Syntax Based Statistical Machine Translation

by Philip Williams, Syntax Based Statistical Machine Translation Books available in PDF, EPUB, Mobi Format. Download Syntax Based Statistical Machine Translation books, This unique book provides a comprehensive introduction to the most popular syntax-based statistical machine translation models, filling a gap in the current literature for researchers and developers in human language technologies. While phrase-based models have previously dominated the field, syntax-based approaches have proved a popular alternative, as they elegantly solve many of the shortcomings of phrase-based models. The heart of this book is a detailed introduction to decoding for syntax-based models. The book begins with an overview of synchronous-context free grammar (SCFG) and synchronous tree-substitution grammar (STSG) along with their associated statistical models. It also describes how three popular instantiations (Hiero, SAMT, and GHKM) are learned from parallel corpora. It introduces and details hypergraphs and associated general algorithms, as well as algorithms for decoding with both tree and string input. Special attention is given to efficiency, including search approximations such as beam search and cube pruning, data structures, and parsing algorithms. The book consistently highlights the strengths (and limitations) of syntax-based approaches, including their ability to generalize phrase-based translation units, their modeling of specific linguistic phenomena, and their function of structuring the search space.



Data Selection For Statistical Machine Translation

Data Selection for Statistical Machine Translation PDF
Author: Amittai Axelrod
Publisher:
ISBN:
Category :
Languages : un
Pages : 124

Get Book

Data Selection For Statistical Machine Translation

by Amittai Axelrod, Data Selection For Statistical Machine Translation Books available in PDF, EPUB, Mobi Format. Download Data Selection For Statistical Machine Translation books, Machine translation, the computerized translation of one human language to another, could be used to communicate between the thousands of languages used around the world. Statistical machine translation (SMT) is an approach to building these translation engines without much human intervention, and large-scale implementations by Google, Microsoft, and Facebook in their products are used by millions daily. The quality of SMT systems depends on the example translations used to train the models. Data can come from a variety of sources, many of which are not optimal for common specific tasks. The goal is to be able to find the right data to use to train a model for a particular task. This work determines the most relevant subsets of these large datasets with respect to a translation task, enabling the construction of task-specific translation systems that are more accurate and easier to train than the large-scale models. Three methods are explored for identifying task-relevant translation training data from a general data pool. The first uses only a language model to score the training data according to lexical probabilities, improving on prior results by using a bilingual score that accounts for differences between the target domain and the general data. The second is a topic-based relevance score that is novel for SMT, using topic models to project texts into a latent semantic space. These semantic vectors are then used to compute similarity of sentences in the general pool to the target task. This work finds that what the automatic topic models capture for some tasks is actually the style of the language, rather than task-specific content words. This motivates the third approach, a novel style-based data selection method. Hybrid word and part-of-speech (POS) representations of the two corpora are constructed by retaining the discriminative words and using POS tags as a proxy for the stylistic content of the infrequent words. Language models based on these representations can be used to quantify the underlying stylistic relevance between two texts. Experiments show that style-based data selection can outperform the current state-of-the-art method for task-specific data selection, in terms of SMT system performance and vocabulary coverage. Taken together, the experimental results indicate that it is important to characterize corpus differences when selecting data for statistical machine translation.



Statistical Machine Translation A Clear And Concise Reference

Statistical Machine Translation a Clear and Concise Reference PDF
Author: Gerardus Blokdyk
Publisher: 5starcooks
ISBN: 9780655438489
Category :
Languages : un
Pages : 286

Get Book

Statistical Machine Translation A Clear And Concise Reference

by Gerardus Blokdyk, Statistical Machine Translation A Clear And Concise Reference Books available in PDF, EPUB, Mobi Format. Download Statistical Machine Translation A Clear And Concise Reference books, Will team members perform Statistical machine translation work when assigned and in a timely fashion? Where do ideas that reach policy makers and planners as proposals for Statistical machine translation strengthening and reform actually originate? Can Management personnel recognize the monetary benefit of Statistical machine translation? What about Statistical machine translation Analysis of results? Do we monitor the Statistical machine translation decisions made and fine tune them as they evolve? Defining, designing, creating, and implementing a process to solve a challenge or meet an objective is the most valuable role... In EVERY group, company, organization and department. Unless you are talking a one-time, single-use project, there should be a process. Whether that process is managed and implemented by humans, AI, or a combination of the two, it needs to be designed by someone with a complex enough perspective to ask the right questions. Someone capable of asking the right questions and step back and say, 'What are we really trying to accomplish here? And is there a different way to look at it?' This Self-Assessment empowers people to do just that - whether their title is entrepreneur, manager, consultant, (Vice-)President, CxO etc... - they are the people who rule the future. They are the person who asks the right questions to make Statistical machine translation investments work better. This Statistical machine translation All-Inclusive Self-Assessment enables You to be that person. All the tools you need to an in-depth Statistical machine translation Self-Assessment. Featuring 680 new and updated case-based questions, organized into seven core areas of process design, this Self-Assessment will help you identify areas in which Statistical machine translation improvements can be made. In using the questions you will be better able to: - diagnose Statistical machine translation projects, initiatives, organizations, businesses and processes using accepted diagnostic standards and practices - implement evidence-based best practice strategies aligned with overall goals - integrate recent advances in Statistical machine translation and process design strategies into practice according to best practice guidelines Using a Self-Assessment tool known as the Statistical machine translation Scorecard, you will develop a clear picture of which Statistical machine translation areas need attention. Your purchase includes access details to the Statistical machine translation self-assessment dashboard download which gives you your dynamically prioritized projects-ready tool and shows your organization exactly what to do next. You will receive the following contents with New and Updated specific criteria: - The latest quick edition of the book in PDF - The latest complete edition of the book in PDF, which criteria correspond to the criteria in... - The Self-Assessment Excel Dashboard, and... - Example pre-filled Self-Assessment Excel Dashboard to get familiar with results generation ...plus an extra, special, resource that helps you with project managing. INCLUDES LIFETIME SELF ASSESSMENT UPDATES Every self assessment comes with Lifetime Updates and Lifetime Free Updated Books. Lifetime Updates is an industry-first feature which allows you to receive verified self assessment updates, ensuring you always have the most accurate information at your fingertips.



Phrase Alignment Models For Statistical Machine Translation

Phrase Alignment Models for Statistical Machine Translation PDF
Author: John Sturdy DeNero
Publisher:
ISBN:
Category :
Languages : un
Pages : 210

Get Book

Phrase Alignment Models For Statistical Machine Translation

by John Sturdy DeNero, Phrase Alignment Models For Statistical Machine Translation Books available in PDF, EPUB, Mobi Format. Download Phrase Alignment Models For Statistical Machine Translation books, The goal of a machine translation (MT) system is to automatically translate a document written in some human input language (e.g., Mandarin Chinese) into an equivalent document written in an output language (e.g., English). This task--so simple in its specification, and yet so rich in its complexities--has challenged computer science researchers for 60 years. While MT systems are in wide use today, the problem of producing human-quality translations remains unsolved. Statistical approaches have substantially improved the quality of MT systems by effectively exploiting parallel corpora: large collections of documents that have been translated by people, and therefore naturally occur in both the input and output languages. Broadly characterized, statistical MT systems translate an input document by matching fragments of its contents to examples in a parallel corpus, and then stitching together the translations of those fragments into a coherent document in an output language. The central challenge of this approach is to distill example translations into reusable parts: fragments of sentences that we know how to translate robustly and are likely to recur. Individual words are certainly common enough to recur, but they often cannot be translated correctly in isolation. At the other extreme, whole sentences can be translated without much context, but rarely repeat, and so cannot be recycled to build new translations. This thesis focuses on acquiring translations of phrases: contiguous sequences of a few words that encapsulate enough context to be translatable, but recur frequently in large corpora. We automatically identify phrase-level translations that are contained within human-translated sentences by partitioning each sentence into phrases and aligning phrases across languages. This alignment-based approach to acquiring phrasal translations gives rise to statistical models of phrase alignment. A statistical phrase alignment model assigns a score to each possible analysis of a sentence-level translation, where an analysis describes which phrases within that sentence can be translated and how to translate them. If the model assigns a high score to a particular phrasal translation, we should be willing to reuse that translation in new sentences that contain the same phrase. Chapter 1 provides a non-technical introduction to phrase alignment models and machine translation. Chapter 2 describes a complete state-of-the-art phrase-based translation system to clarify the role of phrase alignment models. The remainder of this thesis presents a series of novel models, analyses, and experimental results that together constitute a thorough investigation of phrase alignment models for statistical machine translation. Chapter 3 presents the formal properties of the class of phrase alignment models, including inference algorithms and tractability results. We present two specific models, along with statistical learning techniques to fit their parameters to data. Our experimental evaluation identifies two primary challenges to training and employing phrase alignment models, and we address each of these in turn. The first broad challenge is that generative phrase models are structured to prefer very long, rare phrases. These models require external pressure to explain observed translations using small, reusable phrases rather than large, unique ones. Chapter 4 describes three Bayesian models and a corresponding Gibbs sampler to address this challenge. These models outperform the word-level models that are widely employed in research and production MT systems. The second broad challenge is structural: there are many consistent and coherent ways of analyzing a translated sentence using phrases. Long phrases, short phrases, and overlapping phrases can all simultaneously express correct, translatable units. However, no previous phrase alignment models have leveraged this rich structure to predict alignments. We describe a discriminative model of multi-scale, overlapping phrases that outperforms all previously proposed models. The cumulative result of this thesis is to establish model-based phrase alignment as the most effective approach to acquiring phrasal translations. Only phrase alignment models are able to incorporate statistical signals about multi-word constructions into alignment decisions and score coherent phrasal analyses of full sentence pairs. As a result, phrase alignment models outperform classical word-level models in both generative and discriminative settings. This result is fundamental to the field: the models proposed in this thesis address a general, language-independent alignment problem that arises in all state-of-the-art statistical machine translation systems in use today.